21世纪的牛顿力学 作者:程稳平程实平-第5节
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
0时,dV可能等于0 ,譬如将几个作完全相同的匀速运动的物体连为一体,对其中原来的任何一个物体而言,都可以说M发生了改变,但V未发生改变。此时,MdV=0;而 VdM≠0,但F=0是明摆着的事实。
必须说明dV=0时dM≠0的来历,否则我们不能继续使用牛顿第二定律的微分式子。只有在M改变的物理意义是dM=M-M0 ,而M 对应的是V 、M0对应的是V0时,才是使用牛顿第二定律的微分式子的充分条件。
当物质的运动速度V接近于光速,例如:V在〔0。99999C ; 0。999999999C〕范围中进行变化,取V0 = 0。999999999C,此时将有dV ≈ ( V - C )。我们根据牛顿第二定律的微分式子和质能换算关系可以推导得出:
C2 dM = V2 dM + VMdV
→ C2 dM - V2 dM = VMdV ,
→ ( C + V )( C - V )dM = VMdV ,
→ ( C + V )dM = VMdV/( C - V ) ≈ - VM ,
∴ dM ≈ - VM/( C + V ) ≈ - 0。5M ;
根据此结果,V0越接近于C,速度改变得越少,质量减少一半的推测越准确。这显然是错误的结论。
它表明:牛顿第二定律在物质的运动速度接近光速时已不再保持成立,人们不能继续使用根据牛顿第二定律推导得出的质速关系式子,计算光子在速度小于C时对应具有的质量是多少。
从逻辑上说,质能换算系数K≈C2 属于某种巧合,它也就意味着在特殊条件下,光子的运动速度有可能超过通常情况下的真空光速。鉴于具有能量为hν的光子具有相应的惯性质量或引力质量为M=hν/ C2 ,从理论上不难分析出:以初速度为C的运动光子垂直于某个星球表面向外发射,当星球的半径R与其质量M满足关系R=2GM/C2之时,光子在离开星球到达无穷远处时速度将减为零。实际上只要到达足够远后,该光子的速度将降低到足够小。一旦光子具有的能量减小到已不足以使它还能以光子的形式存在之时,该光子就会被转换成其它的物质存在形式。于是,人们将观察不到从距地球遥远的此类星球表面发出来的光线。虽然它们可以将周围临近的物体吸引到自己上面去,外面射向它的光线也会被它们所接受,但是它们发出的任何射线却不能被足够远处的观察者观测到。
这类星球也就是所谓的〃黑洞〃,并构成一种类型的〃暗物质〃。当然,这只是理论上忽略了诸多未确定因素进行的推导,实际在宇宙中是否存在〃黑洞〃星体,迄今仍然还是一个迷!
在人们弄清楚了质量与能量之间的关系后,光子在强引力场中运动所发生的光线偏转,完全可以用大家早已熟悉的经典力学公式去进行分析,它不再是困扰人们思想的问题。
物质运动速度的改变,也就是能量从一个物质转移到了另一个物质上。作为能量集合体的物质,能量发生增加或减少,将相应地反映到质量的增加或减少上。
质能关系的应用,原理上只能在相对于与绝对空间保持静止的参照系中才能使用,也即该公式不能传递到局部惯性系上去使用。但由于太阳系相对于银河系的系统质心,近似在银河系对称中心,仅以每秒几十公里的线速度进行运动,除非是整个银河系的系统质心以极高速度相对于与绝对空间保持静止的参照系进行运动,在地面上做质能关系实验研究时,低速下质量的改变几乎观察不出来,而在速度达到每秒几百公里,每秒几千公里时,地球系统自身的背景运动速度又可以忽略不记了。由于这个特殊原因,使得质速关系可以在地面上的参照系中近似地使用。
根据质能关系和牛顿第二定律推导出来的质速关系公式,并没有告诉具体的作用过程怎样进行。例如,加热引起的质量增加并没有发生物体在宏观上有速度变化,人们只是将它解释为分子的运动速度发生了改变。火箭发射时,飞行速度的变化也与质速关系公式完全不相同,人们也只能把质速关系归结到分子运动的层次上。由此可见,适合应用质速关系式的场所,应该是基本粒子接受或释放出能量之时的作用过程。
五、从空时描述看牛顿定律的实质
当人们用物体在空间的瞬态位置移动量与所对应的时刻变更量dt 之比值来表示被观察物体处于何种运动状态中时:〃速度〃不变,表明被观察物体进行的是状态恒定的惯性运动;而〃速度〃改变,表明被观察物体相对处于状态正在变化着的非惯性运动状态中。显然,人们也同样可以用物体在空间发生位置移动所对应的时刻变更量dt与该物体在空间进行的瞬态位置移动量之比值,特称之为〃耗时速度〃,来反映被观察物体处于何种相对运动状态中。〃耗时速度〃不变,表明被观察物体进行的是状态恒定的惯性运动;而〃耗时速度〃改变,表明被观察物体相对处于状态正在变化着的非惯性运动状态之中。
当我们把物体的空间位置作为自变量,通过用物体在等距离移动过程中的时刻改变规律来描述物质世界中的运动现象时,我们称之为对物质运动做出的〃空时描述〃。相应的,〃耗时速度〃的改变率称作〃耗时加速度〃(用表示)。由于耗时速度与人们已经熟悉的物体移动速度在数值上是互为倒数关系,在被考察物体的质量变化dM可以忽略的情况下,使用耗时速度来描述物体的运动状况时,牛顿第二定律的数学表达方程可以从以往的经典公式推导得出为:
此时物体受到的作用力不仅与〃耗时加速度〃成正比,还同时与〃耗时速度〃的3次方成反比。设K2 参照系相对于K1 参照系以不变的速度作匀速运动,相应的〃匀耗时速度〃为 ,人们马上会得出:这些熟悉的式子。但是在之间,之间却是如下的关系:
这表明,在一组互相保持作匀速直线运动的参照系中,既可以采用〃时空描述〃方式对同一个物体的运动状况进行分析,也可以采用〃空时描述〃方式对同一个物体的运动状况进行完全等效的分析。由于:
这个结果与将时间作为自变量时推导出来的式子完全相同。它表明在数学上可能会有多种方式对同一个物理现象做出表达,只要它们不违反数学推导规则,结果都应该相同。但是在物理上,不同的出发点意味着不一样的分析思路。人们把时间作为自变量对物理现象做出的〃时空描述〃,最大的优点就是那些已经被人们发现的运动方程都显现出比较简便的表达形式。而且这些运动方程并不要求时间必须是单方向流逝的正值才能成立。这给人们进行数学上的推演带来了方便,但同时也使人们对时间产生出了神秘化的误解。从研究思路上来说,所谓的〃时间〃仅仅不过是人们为了便于对物体运动规律进行研究而引入的一个参考变量。实际上,物体进行运动并不需要有一个假想的时刻先变化,它才跟着变化。因此,采用〃空时描述〃解说物质的运动,比采用〃时空描述〃解说物质的运动在物理意义上更为准确。
六、正确理解相对性原理
按照伽利略提出的相对性变换原理,人们通过实验检验手段,只要找到了一个实际存在的可以应用力学定律对被观察物体的运动规律进行分析研究的惯性参照系,凡是建立在相对于该参照系作匀速直线运动的实际物体上或实际不存在的假想物体上的参照系,都可以应用牛顿第二定律对同一个被观察物体的运动规律进行定量的数学分析。因此,人们不可能发现真正驻定的相对于绝对空间处于静止状态的参照系。但同时也必须看到,只要对加速度再求一次导数,人们就能够得出另外一个新的力学定律:作用力的变化率等于被作用物体的质量乘上该物体的加速度变化率。这个新力学定律对彼此保持做相对匀加速运动的参照系具有完全相同的数学表达式,人们当然也可以将它理解为对相互保持作匀加速运动的参照系也成立的另外一个相对不变性原理。但除非这么做能够对人们的研究工作带来某种有使用价值的内容,否则那就仅仅不过是在玩玩没有实际意义的数学游戏而已。
实际上,相对性变换原理并不是自然界中的物质运动必须遵循的基本规律。譬如:相对性变换原理对能量守恒定律就不成立。能量守恒定律是自然界中最基本的运动规律,无论人们是否建立起了物理学理论,它都不会受到影响。一个物体实际具有多少能量,不会因为人们在空间选择了不同的参照系来做观察基准而发生改变!人们在空间选择的各个参照系,有的可能正确反映出被观察物体实际具有的动能值,但更多的情况是不能够正确反映出被观察物体实际具有的动能值。
严格地说,伽利略相对性变换原理对动量守恒定律在数学上也已经不再保持成立。大家知道,对于速率不等的每一个惯性参照系,被观察物体系统的动量总和在该物体系统未受到外部作用力作用时将对应保持为不同数值的常数。如果这种描述也算是符合相对性变换原理的话,人们完全可以如法炮制,将牛顿第二定律改成另外一种描述方式:即任意每个物体相对于理想的匀加速参照系具有的加速度乘以该物体质量与作用在该物体上的力之差恒等于某个常数。我们不需要引入莫须有的假想〃引力场〃,就已经实现爱因斯坦建立的广义相对论所的期望目标。然而,进行这种描述上的改变并没有解决任何实质性问题,人们只是把无法寻找理想的惯性参照系这个难题,变成了无法寻找理想的匀加速参照系难题!其实,理想的匀加速参照系和理想的惯性参照系都不是应用牛顿力学定律的必要条件。
在涉及到光的干涉现象时,由相干光束产生的干涉景象在实际空间中都有自己对应的分布状况,不管人们是否借用光线接受屏去进行观察,干涉条纹在空间的分布位置都已经确定。换句话说,相对于其它与麦克尔逊干涉仪不保持静止状态的任何参照系,在麦克尔逊干涉仪器光线接受屏上呈现出来的干涉条纹都不是处于静止状态中的〃不移动空间线〃。人们在与干涉仪器不保持静止状态的运动参照系中,用矢量合成法则变换出来的相对于该运动参照系的光速计算得出的两路相干光之间出现的光程差,与建立在地面静止点上的参照系中,用相对于该静止参照系的光速计算得出的光程差已不再保持相等。由于在19世纪末人们还没有发明出激光器,人们在那时做光学干涉实验,两束相干光的光程差不能相差太大,麦克尔逊干涉仪只能设计成两条臂长相等的光路。在有了激光器做光源之后,我们完全可以把干涉仪设计成下图所示的光路:
此时,一束光线直接通过两只半透半反射镜到达光线接受屏;另一束光线则先被前一只45度半透半反射镜从A处反射到B处,在B处被45度全反射镜从B处反射到C处,在C处被45度全反射镜从C处反射到D处,之后,再被后一只45度半透半反射镜将其反射到光线接受屏上。这两束相干光在光线接受屏上产生的干涉条纹,将由它们所经过的光路的光程差确定。显然,这两束相干光的光程差等于2L,换算成时间差就是Δt=2L/C 。在水平光路上,与干涉仪保持静止的O参照系以速度C传播的光线,相对于与O参照系以速度V运动的O′参照系传播的相对速度应该等于C…V。根据时间差与参照系无关的事实,用经过矢量合成法则换算出来的相对光速C…V乘上时间差Δt,得到的结果是:
(C…V)Δt = 2L( 1 … V/C ) ≠ 2L
要使O′ 参照系中具有的相对光速乘上时间差仍然等于与干涉仪保持静止的O参照系中计算出来的光程差,就只能假定光线在O′参照系中具有的相对传播速度也等于C 。再看看垂直光路上的情况,原来在与干涉仪保持静止的O参照系中以速度C传播的光线,在O′ 参照系中换算出来的相对速度是 。对波振面上的任何一个点来说,在O′ 参照系中走过的路程也响应的改变为L ,光线从A点传播到B点,或从C点传播到D点,无论在那个参照系中,都是完全相同的时间间隔。于是在O′ 参照系中,用垂直光路上换算出来的相对速度 乘以相应的时间间隔将是等于2L >2L。它表明:人们既不能用两束相干光分别经过不同的光路再汇合到一起时具有的传播速度和它们在经过不同的光路形成的时间差来计算真实的光程位相差,也不能用光线在O′ 参照系中走过的路程差来计算真实的光程位相差。伽利略提出的相对性变换原理在这里已经完全止步。
再看质速关系式子的情况,我们根据牛顿第二定律和质能换算关系E=KM 可以推导出:
按照约定,物