复杂性中的思维-第30节
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
他争辩道,线性量子力学和非线性广义相对论的统一理论,至少在原则上可以解释世界上的独立宏观系统状态,而不必牵涉到拟人的或目的论原理。在彭罗斯主张的统一理论中,物理系统的线性叠加,当系统对于相对论引力效应充分大时,就会分裂成独立状态。彭罗斯计算了在一个引力子水平上,对于这种效应的最小的曲率单位的情况。该思想是,这种水平应该令人满意地落在线性量子力学定律的原子、分子等等的量子水平与日常经验的
经典水平之间。彭罗斯论据的优点在于,量子世界的线性与宏观世界的非线性将可能用统一的物理理论来解释,而不必牵涉任何人F的干预。当然,我们仍然缺乏可检验的统一理论(参照2.4节)。
然而,由此引出的问题是,量子力学是否提供了人的大脑进化的框架,或至少为新的计算机技术去取代经典的计算机系统提供了框架。量子力学的基本思想是量子状态的叠加,这种叠加是由某种测量实现的线性量子动力学和叠加归并的结果。因此,一个量子计算机世界需要一种逻辑门的量子版本,在此输出将是某种统一算符应用于测量的输入和最终作用的结果。量子系统(例如光子)的叠加提醒我们计算的平行性。如果我们感兴趣的是对于许多计算结果的某种适当组合,而不是其部分的细节,量子计算机将变得非常有用。在此意义上,量子计算机可以在相对短的时间内实现可能的数量巨大的平行计算的叠加,从而克服经典计算系统的效率问题。但是,量子计算机仍将按照某种算法方式运行,因为它们的线性动力学是确定论的。测量的非线性将带来非确定论方面。因此,我们不可能期待,量子计算机将以超出图林机能力而以非算法算符方式运行。所以,量子计算机(如果它们构造出来了)对于复杂性理论和克服实际的计算约束可能更有趣。
关于人的大脑,我们想要争辩的是,量子水平上的基本粒子、原子和分子对于其进化是必要的,而不是需要其他的东西——物理学相关态的归并所必要的大脑精神状态。实际上,相当多的神经元对于单个量子及其叠加和牵连状态的归并并不敏感。但是,这些量子状态当然不可能被大脑的精神状态所察觉。我们既不能意识到叠加,也不能意识到它们由非线性的随机事件引起的分裂成单个状态。然而,在大脑的精神状态的形成和相互作用中涉及到量子效应,它们还远未被满意地理解。
5.3神经计算机和协同计算机
在逻辑、经典力学和量子力学之后,我们还要考察复杂动力学系统对于计算机科学和人工智能发展的关系。显然,图林类型机的算法机制面临着严重的障碍是不可能随经典或量子计算机能力的增长而克服的。例如,模式识别和其他的关于人的感知的复杂任务,不可能由程序控制的计算机来把握。人脑的结构看来是完全不同的。
在科学史上,大脑是用最先进的机器技术模型来说明的。因此,在机械化时代,大脑的功能被看作是沿着神经对于肌肉进行作的液压。随着电子技术的出现,大脑被拿来与电报或电话交换机进行比较。由于计算机的发展,大脑也就被当作最先进的计算机。在上一章中,我们见到,甚至量子计算机(如果它们被构造出来)也不可能使它们的能力增加到超出图林类型算法的复杂性。
与程序控制的系列计算机不同,人的大脑和精神的特征包括矛盾性、不完全性、顽健性和抗噪声、混沌态、对于初始条件的敏感性最后但并非最不重要的是还有学习过程。这些特征在复杂系统探究方式中是众所周知的。关于图林类型和复杂系统的构造,一个根本的局限性来自经典系统的顺序的、集中的控制,而复杂动力系统是内在平行的和自组织的。
然而,历史上,最初的神经网络计算机的设计仍然受到了图林机概念的影响。在麦卡洛克和皮茨的著名文章《神经活动中思想内在性的逻辑演算》(1943)中,作者提出了一种被神经元作为阈值逻辑单元的复杂模型,单元中有激发和抑制突触,这里就运用了罗素、希尔伯特、卡纳普及其他人的数理逻辑概念以及图林机概念。一个麦卡洛克…皮茨神经元在时刻n+1发放一个沿其轴突的脉冲y,如果在时刻n它的输入x1,…,xm和权重WI,…,Wm的权重和超过了神经元的阈值O(图5.15a)。
麦卡洛克…皮茨神经元的特殊应用是如下的逻辑关联模型:或门(图5.15b)模拟了句子x1和x2的逻辑析取x1ORx2(形式上是x1Ⅴx2),它为假,仅当x1和x2是假句子,否则它是真的。真值是二元表示0(代表假)和1(代表真)。对于阈值Θ=1和权重W1=1和W2=1,或门以x1w1…x2w2≥Θ的方式发放,只要x1或x2或者x1和x2都是1。
与门(图5。15c)模拟了x1ANDx2的逻辑合取x1并x2(形式上是x1x2),它为真,仅当x1和x2是真句子,否则它是假的。对于阈值Θ=2和权重w1=1和w2=1,与门以x1w1+x2w2≥Θ的方式发放,仅仅当x1和x2都是1。
非门(图5.15d)模拟逻辑否定NOTx1(形式上是x1),它为真,仅当x1是假的,否则它是假的。对于阈值Θ=0和权重w1=-1,非门以x1w1≥Θ的方式发放,仅当x1为0。因此如果x1是1,那么非门并不发放,这意味着输出y=
x1=0
一个麦卡洛克-皮茨神经网络是一个麦卡洛克-皮茨神经元系统:把每一神经元的输出分解成为线路而相互关联起来,其中一些输出还与其他神经元的输入相关联(图5.16)。尽管这种系统概念非常简单,但是任何“经典的”冯·诺意曼计算机都可以用这种神经元网络进行模拟。1954年,约翰·冯·诺意曼写了一篇报告稿。它以首次明确阐述存贮程序的思想而闻名,存贮程序与其要操作的数据都可驻留在计算机的记忆装置中。该历史文献表明,冯·诺意曼完全意识到用麦卡洛克-皮茨网络进行计算的可能性。
数学上,一台冯·诺意曼计算机可以设想为一台有限自动机,包括有限输入集X、有限输出集Y和状态的有限集Q。有限自动机的动力学用下一状态的函数&来定义,将时刻t的状态q和输入X变换为时刻t+1的状态&(q,X),以及将输出函数B与状态q关联成为输出B(q)。
一台冯·诺意曼计算机的组件,诸如输入…输出单元、存贮器、逻辑控制单元和算法单元,都容易表明是有限自动机。甚至一台现代的数值计算机,它是由数千元素集成在芯片上的网络,也可以理解为麦卡洛克…皮茨类型的神经网络。一般地说,每一寄存机、图林机或递归函数,都可以用适当的有限自动机网络来模拟。但是这些麦卡洛克…皮茨神经网络的应用仍然是在程序控制系列计算机的框架中工作。
最先试图将图林的通用计算机概念扩展到自繁殖自动机思想又是约翰冯诺意曼。他注意到,一台建造其他机器的机器,会降低被建造机的复杂性,因为它使用的材料不可能多于由建造机所给定的材料。与这种传统的机械观点相反,生物进化中的活的有机体看来至少是可以与其父代一样复杂,而在长期进化中会增加其复杂性(赫伯特·斯宾塞)。
冯·诺意曼的细胞自动机概念,把活的有机体设想为细胞的自繁殖网络从而首次提出了为其建立数学模型的线索。态空间是均一点阵,它被划分为相同的元胞如同棋盘。一台初等的元胞自动机是一个元胞,它可以具有不同的状态,例如可以有“占态”(用一个记号)、“空态”或“色态”。初等自动机的集合体,被叫做一台复合自动机或构型。每一自动机都以其环境即相邻元胞为标志。自动机的动力学是由同步变换规则确定的。冯·诺意曼证明,活系统的典型特征,它们的繁殖自身的趋势,都可以用(平面上的)2 0个元胞的自动机来模拟,在此每一元胞有29种可能的状态,4个相邻角上的元胞则作为环境。
这种思想由约翰·康韦发展了,他的元胞自动机可以模拟活系统群体的生长、变化和死亡。下面是一个简单的例子,其中元胞有两种可能的状态“占态”(记号)或“空态”,使用同步规则:
1)生存规则:一个有2至3个占态相邻元胞的占态元胞保持不变化。
2)死亡规则:一个元胞丢失了它的记号,如果它有3个以上的邻居元胞(“群体过密”)或少于两个邻居(“孤立”)。
3)新生规则:如果一个空的元胞正好具有3个占态的相邻元胞,那么它就获得一个记号。
图5.17a示意了一种构型在第三代的“死亡”,图5.17b示意在第二代的“生存”。康韦的理论还有一些更令人吃惊的结果,它们是通过计算机实验发现的。
元胞自动机不仅仅是优美的计算机游戏。它们还是描述了其动力学演化的非线性偏微分方程复杂系统的离散化和量子化模型。让我们再想像一块类似棋盘的元胞的平面。一条有限的元胞串,构成了一台1维元胞机自动机,其中每一个元胞都可以取两种状态之一(“黑”(0)或“白”(1)),它仅仅与其两个最近相邻发生关联,在此它们交换关于其状态的信息。1维元胞自动机的紧随的(下一个)状态是空时平面紧随的元胞串,其中每一都由取得一种或两种状态的元胞构成,依赖于它们先前的(上一个)状态和它们的两个最近相邻。图5.18b-e表示4个元胞自动机在60步中的时间演化。因此,1维元胞自动机的动力学是由3个变量的布尔函数确定的,其中的每一个变量都可以取值0或1。
对于3个变量和两个值,3个近邻有2'3'=8种可能性。在图5.18a中,它们是按照相应的3个数字的二进制数排序的。对于3个近邻中的每一个,必定有一个规则确定中间元胞的随后状态。对于8个数字的序列和两种可能状态,有2'8'=256种可能的组合。这些可能的组合之一,确定了一个1维元胞自动机的动力学,这示意在图5.18a中。
每一规则,由8个数字的二进制数的状态来标志,这些状态是每一随后的元胞串可以采取的。这些二进制数可以按照它们的相应的十进制数来排序。
这些规则的时间演化标志了1维元胞自动机的动力学,从随机的初始条件出发产生出非常不同的元胞模式。计算机实验给出了演化的元胞模式所要采取的如下的吸引子类型。经过一些步骤以后,类型1的系统到达了与起始条件无关的平衡均匀态。这种平衡终态示意为完全的白平面,并相应于某种作为吸引子的不动点(图5.18b)。
类型2的系统,经过一些步骤后,表现出恒定的或周期的演化模式,它是相对独立于其起始条件的。模式的特定位置可能依赖于起始条件,但不是总体模式结构都取决于起始条件。
类型3的系统向混沌态作为终态吸引子演化,而没有任何的总体周期性。这些混沌模式敏感地取决于起始条件,并表现出具有分数维数的自相似行为(图5.18d)。类型4的系统产生高度复杂的结构,具有局域传播形式(图5.18e)。类型3和4的系统对于微小的涨落是敏感的,微小的涨落可以影响秩序的总体变化(“蝴蝶效应”)。因此,在这些情形中,演化过程不可能作出长期预测。
显然,这4种类型的元胞自动机模拟了自组织过程中大家熟悉的非线性复杂系统的吸引子行为。在前面的章节中,我们已经看见了许多物质、生命和精神-大脑进化的例子。在第6章中,我们将要考虑许多与人类社会进化的类似性。一般地,自组织被理解为复杂系统中的相变。宏观模式从微观元素的复杂非线性相互作用中出现。相变的不同终态相应于数学上不同的吸引子。
在图2.27a-e中,已经对于流体的不同吸引子进行了考察,流速是逐步加速的。这些流体模式,与相应的元胞自动机的演化模式有许多相似之处。在最初的水平上,流体到达了均匀的平衡态(“不动点”)。在较高速度时,可以观察到两个或多个顶点的分叉,相应于周期的和准周期的吸引子。最后,有序衰退为确定论混沌,它是复杂系统的分形吸引子。元胞自动机的类型3和类型4对于建立过程模型极为有趣。类型3提供了混沌系统的演化模式。类型4表现了耗散系统的演化模式,这样的系统有时具有拟有机形式,它们可以在有机体和群体的进化中观察到。
从方法论的观点看,一个一维的元胞自动机提供了一种离散的量子化相图模型,描述了依赖于一个空间变量的具